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Introduction 

• Elements of sonic boom propagation 

 

 

 

 

 

 

 

 

 

 

 

 

• Sonic boom propagation prediction and metrics calculation tools are used to 

evaluate supersonic aircraft designs 

• Desire to compare predictions from different developers 
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Previous Study 

• Comparison of sonic boom propagation codes conducted by Cleveland et al. 

– Three codes compared favorably 

4 Cleveland et al. Comparison of computer codes for the propagation of sonic boom waveforms through isothermal atmospheres. J. Acoust. Soc. Am. 

100(5): 3017-3027, 1996. 

• Reasons to conduct a new comparison 

– Codes have been modified over last 20 years 

– New codes have been developed 

– Boom waveforms of interest have changed 

– Cleveland analysis did not consider any noise metrics 

 



Sonic Boom Propagation and PL Comparison 

• Objective 

– To achieve more consistent results across partners and to facilitate understanding of 

possible differences in computer codes used in sonic boom research 

 

• Approach 

– Conducted a new baseline comparison of sonic boom atmospheric propagation and 

noise metric calculation tools 

• Developed a set of input cases for propagation and Perceived Level (PL) 

calculation 

• Participating organizations used their tools to run these cases and returned their 

results to NASA 

• All provided results were reviewed and compared with baseline results from 

NASA’s tool suite 
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Summary of Perceived Level (PL) 

• Metric for perceived level of loudness developed by Stevens 

– Developed to predict behavior of human auditory system in response to sound 

• Adapted for use with sonic booms by Shepherd and Sullivan 

• PL has been shown to correlate well with human perception of sonic booms 

heard outdoors 

– PL is used today to evaluate supersonic aircraft designs 

 

• Uses signal spectrum in one-third-octave bands 

• Uses a set of frequency weighting contours that vary with level 

– (By contrast, A-weighting contour does not vary with level) 

– Based on equal loudness contours for bands of noise 

– Extends down to 1 Hz, but this is an approximation 

• Band of highest weighted level is the most important to overall level 

6 S. S. Stevens. Perceived level of noise by Mark VII and decibels (E). J. Acoust. Soc. Am., 51(2):575–601, 1972. 

K. P. Shepherd and B. M. Sullivan. A loudness calculation procedure applied to shaped sonic booms. NASA Technical Report TP-3134, 1991. 



Calculation Steps for Perceived Level (PL) 

1. Calculate Sound Pressure Level of signal 

in 1/3-octave bands 

2. Apply frequency weighting for loudness of 

individual bands 

• where loudness of 1 sone is referenced to 

1/3-oct band of noise at 3150 Hz at 32 dB 

3. Apply summation rule for total loudness 

 

 

 

 

 

 

4. Convert to PL in dB 

St = Sm + F(SS - Sm) 

where  

St = total loudness 

Sm = loudness of loudest band 

SS = sum of loudnesses of all the bands 

F = fractional factor based on Sm 

PL = 32 + 9 log2(St) 

7 
S. S. Stevens. Perceived level of noise by Mark VII and decibels (E). J. Acoust. Soc. Am., 51(2):575–601, 1972. 
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PL Test Cases of Ground Booms 
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boom1, PL = 91.82 dB
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boom2, PL = 75.79 dB

• Included to test that PL algorithms are implemented correctly 

• Synthesized N-waves with different rise times, peak pressures, and durations   

• Adequately sampled at 48 kHz with ample zero-padding 

• Initial results indicated some codes needed to be modified to be in compliance 

with NASA’s baseline method 

• Majority of updated results within 0.1 dB of baseline (all within 0.45 dB of 

baseline) 



PL Test Cases of Ground Booms 

• Included to highlight 

difficulties in processing 

measured booms and 

predicted booms 

• Results more varied 

than for simpler cases 

• Windowing, 

zeropadding, and 

resampling methods 

varied 

• All calculations agree 

within 1 dB of baseline 
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PL = 85.38 dB
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Sonic Boom Propagation Prediction Overview 

• Input is the overpressure signature predicted at several body lengths away from 

the aircraft 

 

• Geometrical acoustics method (ray tracing) 

– Determines propagation path from altitude to ground 

– Accounts for variations in speed of sound and wind speed 

 

• Nonlinear, lossy propagation based on extended generalized Burgers equation 

– Predict evolution of sonic boom as it propagates along rays 

– Second-order nonlinearity and the formation of shocks 

– Atmospheric absorption due to thermoviscous and molecular relaxation effects 

• Varies according to input of atmospheric conditions (stratified atmosphere) 

– Geometrical spreading loss 

– Solved numerically with a finite-difference method 

 

• Numerical implementation varies 
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Inputs to Propagation Codes 

• Overpressure signature predicted at several body lengths away from the aircraft 

– F-function 

– Overpressure distribution on a cylindrical surface from CFD flow predictions 

– Wind tunnel test measurement 

– In-flight near-field probing measurement 

 

• Flight altitude and Mach number 

 

• Flight trajectory 

 

• Atmospheric conditions 

– Atmospheric pressure, temperature, relative humidity, winds 

 

• Ground impedance or reflection factor 
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Propagation Test Cases 

• Near-field signature, Mach number, altitude, and atmospheric conditions 

provided as input to sonic boom propagation codes 

• Ground waveforms (undertrack) requested as output 

• PL calculated with NASA baseline tool 

• Boom 5:  multi-shock low-boom configuration 

• Boom 6:  strong front shock 
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Atmospheric Conditions 

• No winds included 

• Temperature and relative humidity provided 

– Boom 5 conditions are similar to U.S. Standard Atmosphere (1976) and ANSI S1.26-

1995 App. C (2009) 

– Boom 6 conditions are non-standard and include unrealistic relative humidity values 
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Initial Results for Propagation Test Cases 

• Boom 5 results within 0.7 dB of baseline 

• Boom 6 results varied by up to 10 dB from baseline 

• Main variation across partners due to differences in mid-frequency content 

• In addition to method differences, differences in PL may be due to assumptions 

and input settings of 

– Vehicle length 

– Atmospheric pressure 

– Sampling frequency 

– Step size 
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NASA Baseline Boom 5

NASA Baseline Boom 6
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NASA Baseline Boom 5 PL = 75.52 dB

NASA Baseline Boom 6 PL = 94.61 dB

Examined using NASA baseline tool sBOOM 

S. K. Rallabhandi. Advanced sonic boom prediction using augmented Burgers equation. AIAA-2011-1278, 2011. 



Effect of Sampling Frequency (sBOOM) 

• Variations observed of 0.4-0.7 dB 

• Convergence 

– Boom 5 sampling frequency = 697 kHz 

– Boom 6 sampling frequency = 462 kHz 

• Sampling frequency/number of points needed depends on input waveform 

– Higher sampling frequency needed to resolve fine shock structure 
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Effect of Step Size (sBOOM) 

• Variations observed of ~ 0.5 dB 

• Boom 5 and 6 convergence at 10-5 step size 

• Step size needed depends on input waveform 

• Computation time varies from 10-20 s for 10-3 to ~22 hours for 10-6 
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2nd Round: Revised Atmospheric Conditions 

• Revised atmospheric conditions for Boom 6 

– More resolution in relative humidity definition 

– Specified atmospheric pressure due to suspected differences in built-in calculation of 

pressure in different codes 

• Updated Boom 6 results are within 3.5 dB of baseline 
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Revised Results for Propagation Test Cases 
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NASA Baseline PL = 98.86 dB

A. PL = 98.72 dB
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Loudness for Propagation Test Cases 
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Summary 

• Comparison of PL calculations and boom propagation predictions for 6 test 

cases resulted in  

– Some modifications of codes for consistent implementation 

– Awareness of factors contributing to differences 

• Observed up to 3.5 dB variation due to propagation codes 

• Observed less than 1 dB variation due to sampling frequency and step size  

• Observed up to 1 dB variation due to ground signal processing 

 

• Majority of submissions in very good agreement with baseline 

– Differences at high frequencies generally occur at very low levels that are not 

significant to PL or human response 

 

• Based on these results, baseline calculation recommendations have been 

drafted for ease of evaluation of supersonic aircraft designs 

 

• Future 

– Could be useful to consider the effect of winds in different codes 

– Include more participants 20 
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Baseline Boom Propagation Prediction Method 

• Sonic boom propagation prediction 

– sBOOM is the preferred tool, and it is available from NASA 

– A standard atmosphere should be used (U.S. Standard Atmosphere, 1976): 

• Pressure, temperature, and humidity 

• No winds should be included 

• sBOOM should be used for all boom predictions, with the exception of focus 

boom predictions.  Since sBOOM does not include calculation of focus booms, 

other methods may be used. 

• The step size should be set to 0.001 

• The sampling frequency should be set to ≥ 40 kHz i.e. do NOT use resamp.dat 

from sBOOM output to calculate loudness metrics 

• Propagation should start at a distance from the aircraft that gives a converged 

ground signature 

• The ground reflection factor should be set to 1.9 

• Sufficient zeropadding should be applied to the input waveform to avoid clipping 

the shocks during propagation 
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Baseline PL Calculation Method 

• LCASB is the preferred tool, and it is available from NASA 

• PL should be calculated according to Shepherd and Sullivan (1991) 

• PL should be calculated on the waveform with a sampling frequency ≥ 40 kHz 

• A Hanning-type window should be applied to the beginning and ending of the 

waveform to ensure a smooth transition to zero acoustic pressure.  This window 

should be applied so as not to affect the main boom event to be analyzed. 

• Adequate zeropadding should be applied to allow for resolution of low 

frequencies (total signal length ≥ 0.5 s) 

• PL values should be rounded to the nearest 0.1 dB 
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